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Analytical formulas for a class of tunable random electromagnetic beams propagating in a turbulent atmosphere
through a complex optical system are derived with the help of a tensor method. One finds that the far field
intensity distribution is tunable by modulating the source correlation structure function. The on-axis spectral
degree of polarization monotonically increases to the same value for different values of orderM in free space while
it returns to the initial value after propagating a sufficient distance in turbulence. Furthermore, it is revealed
that the state of polarization is closely determined by the initial correlation structure rather than by the
turbulence parameters.
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It is well known the spatial correlation structure of ran-
dom beams significantly affects the propagation intensity
distribution[1]. However, only a few correlation function
models such as the Schell-model source, Bessel-correlated
source, and the Lambertian source have been introduced
over the past decades[1–3]. As a typical correlation source,
the Schell-model source with a Gaussian correlation func-
tion has been extensively studied both in theory and in
experiments over the past decades[4–9]. Since Gori proposed
a sufficient condition for the generation of genuine corre-
lation functions based on a non-negative definiteness[10],
a variety of correlation functions have been proposed,
both theoretically and experimentally. Beams generated
by non-uniform correlation sources have found various
unique properties in terms of self-accelerating, self-
focusing and special beam profiles in terms of dark hollow,
flat-topped and rectangular frame, etc.[11–19].
Coherence and polarization are two fundamentals of

light fields both in classical and quantum optics. They
had been studied separately in literature until James first
reported that the spectral degree of polarization (DOP)
generally changes on propagation induced by the source
correlation property, even in free space[20]. Since Wolf de-
veloped a unified theory of coherence and polarization for
random electromagnetic beams, it is widely used to deter-
mine the statistical properties of random electromagnetic
beams in free space as well as in various media[21–28].
Optical communication exhibits various advantages in

terms of high speed, high bandwidth, and anti-interference
as compared with microwave communication. However,
refractive index fluctuations caused by a turbulent atmos-
phere significantly limit the transmission of optical sig-
nals. As a general extension of Kolmogorov turbulence,
non-Kolmogorov turbulence has been studied widely both
in theory and in experiment in the past decades[29–37]. It is
verified that random beams are found as a suitable way for

reducing the disadvantages induced by a turbulent atmos-
phere[38–52]. Recently, random electromagnetic beams have
been reported as a better optimization of scalar random
beams for reducing turbulence-induced scintillation[53–56].
In some practical applications such as radar systems,
imaging systems, and adaptive optics systems, propaga-
tion systems with one or more optical elements along
the path are involved. The methods used for the line-of-
sight propagation problem do not readily adapt and an
extended Huygens–Fresnel integral principle has been
developed for atmospheric paraxial beam propagation
through a complex optical system characterized by an
ABCD ray matrix.

In this Letter, analytical formulas for the 2 × 2 cross-
spectral density (CSD) matrix of a class of tunable
random electromagnetic beam propagation through the
turbulent atmosphere are derived by using a tensor
method. One finds that the intensity distribution in the
far field is tunable by modulating the source coherence
width and the beam order M . The effects of turbulence
on the statistical properties of a tunable random electro-
magnetic beam such as intensity distribution, the spectral
DOP, and the state of polarization (SOP) have been stud-
ied in detail.

According to the unified theory for random electromag-
netic beams, the second-order spatial coherence properties
of a fluctuating electromagnetic light beam are character-

ized by the 2 × 2 CSDmatrixW
↔

αβðr1; r2;ωÞ with elements
W αβðr1; r2;ωÞ ¼ hE�

αðr1;ωÞEβðr2;ωÞi, ðα ¼ x; yÞ at posi-
tions r1 and r2 at frequency ω. The asterisk denotes the
complex conjugate and the angular brackets stand for
the ensemble average. Within the paraxial approximation,
the propagation of a random electromagnetic beam
through an isotropic turbulent atmosphere can be studied
with the extended Huygens–Fresnel integral[23,24]
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Eαðρ;ωÞ ¼
ik expðikzÞ

2πz

ZZ
exp

�
−
ikðr− ρÞ2

2z

�

× Eαðr;ωÞ exp½Ψαðr; ρ;ωÞ�d2r; ðα ¼ x; yÞ;
(1)

where Ex and Ey represent the two mutually orthogonal
components of the random electric vector with respect to
the x and y directions, Eαðr;ωÞ and Eαðρ;ωÞ denote the
random electric vector in the source plane and the output
plane, ω denotes the angular frequency, k ¼ 2π∕λ is the
wave number with λ being the wavelength, and Ψα is
the Rytov complex random phase perturbation along
the α direction for characterizing the isotropic turbulence.
Based on the Rytov approximation and the weak fluc-

tuation conditions, the ABCD method greatly simplifies
the analysis as compared with other techniques[29]. The ex-
tended Huygens–Fresnel integral formula for light beam
propagation through turbulence with optical elements
placed along the path can be rewritten in the tensor form

W αβð~ρ;ωÞ ¼
k2

4π2½detð ~BÞ�1∕2
ZZ ZZ

W αβð~r;ωÞ

× exp
�
−
ik
2
ð~rT ~B−1 ~r− 2~rT ~B−1 ~ρþ ~ρT ~B−1 ~ρÞ

�

×Kαβð~r; ~ρ;ωÞd4 ~r; (2)

Kαβð~r; ~ρ;ωÞ ≈ exp
�
−
ik
2
~rT ~Qαβ ~r

�
; (3)

~B ¼
�
z · I 0 · I
0 · I −z · I

�
; ~Qαβ ¼

2
ikρ20αβ

�
I −I
−I I

�
;

(4)

where ~rT ¼ ð rT1 rT2 Þ and ~ρT ¼ ð ρT1 ρT2 Þ, ~B denotes the
4 × 4 ray transfer matrix element corresponding to the
entire propagation path, I is the 2 × 2 unit matrix, and
Kαβ represents the spherical wave structure function
(SWSF). ρ0 is the spatial coherence width of the spherical
wave in turbulence under the second quadratic approxi-
mation. In this Letter, we employ the non-Kolmogrov
spectrum, which is[30]

ρ0αβ ¼
�
ξ ~C2

nk2Γðξ− 1ÞCosðπξ∕2Þ
2ξðξ− 1Þ½detð ~BðrÞÞ�−1∕4

� −1
ξ−2

; (5)

where Γ stands for the gamma function and ~BðrÞ is a ma-
trix element that arises from reciprocal propagation from
the output plane. For horizontal propagation paths, it is
customary to treat the generalized refractive-index struc-
ture parameter ~C2

n as a constant with units m3−ξ, and ξ is
the non-Kolmogorov slope restricted to the interval
3 < ξ < 4. When ξ ¼ 11∕3, the generalized power spec-
trum reduces to the conventional Kolmogorov spectrum.
The limit value of ξ ¼ 3 leads to no turbulence causing
the power spectrum invariant. Also, the value ξ ¼ 4 is

excluded for leading an infinite discontinuity in some of
the statistical quantities.

The CSD of a tunable random electromagnetic beam
at the source plane can be alternatively rewritten in the
tensor form

W αβð~r;ωÞ ¼
AαAβBαβ

C0

XM
m¼1

XN
n¼1

ð−1Þmþn−2��������
mn

p

×
�
M
m

��
N
n

�
exp

�
−
ik
2
~rTM−1

0αβ ~r
�
; (6)

where C0 stands for the normalization factor, ðMmÞ
and ðNn Þ are the binomial coefficients. Aα and Bαβ ¼
jBαβj expðiφαβÞ ¼ B�

βα represent the amplitude of the elec-
tric field component along the α direction and the complex
correlation coefficient between α and β components of the
electric field, respectively. M−1

0αβ is the 4 × 4 complex
curvature tensor given by

M−1
0αβ ¼

0
@ ðσ2αÞ−1

2ik þ ðδ2αβÞ−1

ik

iðδ2αβÞ−1

k
iðδ2αβÞ−1

k

ðσ2βÞ−1

2ik þ ðδ2αβÞ−1

ik

1
A; (7)

ðσ2αÞ−1 ¼ σ−2
α · I;

ðσ2βÞ−1 ¼ σ−2
β · I;

ðδ2αβÞ−1 ¼
�mδ2αβx 0

0 nδ2αβy

�−1

;

(8)

where σ2α and σ2β stand for the 2 × 2 transverse square
beam width matrix and δ2αβ is a transverse square coher-
ence width matrix and elements need to satisfy the realiz-
ability condition[26].

On substituting Eqs. (3)–(8) into Eq. (2), we obtain the
analytical formulas for the CSD matrix elements of a tun-
able random electromagnetic beam in turbulence in the
observation plane with the help of a tensor operation

W αβð~ρ;ωÞ ¼
AαAβBαβ

C0

XM
m¼1

XN
n¼1

ð−1Þmþn−2��������
mn

p

×
�
M
m

��
N
n

�
½detð~Iþ ~BM−1

0αβ þ ~B ~QÞ�−1∕2

× exp
�
−
ik
2
~ρT ½ðM−1

0αβ þ ~QÞ−1 þ ~B�−1 ~ρ
�
;

(9)

where ~I represents a 4 × 4 unit matrix.
The average spectral intensity and the spectral DOP of

an electromagnetic beam are defined as[1,21]

I ðρ;ωÞ ¼ Wxxðρ; ρ;ωÞ þWyyðρ; ρ;ωÞ; (10)

Pðρ;ωÞ ¼

�����������������������������������������������
1−

4Det½W
↔
ðρ; ρ;ωÞ�n

Tr½W
↔
ðρ; ρ;ωÞ�

o
2

vuuut . (11)
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where Tr and Det denote the trace and the determinant of
a matrix.
The SOP of an electromagnetic beam can be studied by

the polarization ellipse[38]. The CSD matrix can be repre-
sented as a sum of a completely polarized beam and a
completely unpolarized beam. The polarization ellipse is
a parameter characterizing the fully polarized portion of
the beam. The orientation angle θ is given by the formula

θðρ;ωÞ ¼ 1
2
arctan

�
2ReWxyðρ; ρ;ωÞ

Wxxðρ; ρ;ωÞ−Wyyðρ; ρ;ωÞ
�
;

ð−π∕2 ≤ θ ≤ π∕2Þ: (12)

The major and minor semiaxes of the polarization
ellipse take the form

A�ðρ;ωÞ ¼
1���
2

p
� �������������������������������������������������������

ðWxx −WyyÞ2 þ 4jWxyj2
q

�
��������������������������������������������������������������
ðWxx −WyyÞ2 þ 4½ReWxy�2

q �
1∕2

: (13)

The degree of ellipticity ε characterizing the shape
of the polarization ellipse of an electromagnetic beam is
defined by

ε ¼ A−ðρ; ρ;ωÞ∕Aþðρ; ρ;ωÞ; 0 ≤ ε ≤ 1: (14)

It is seen from Eq. (14) that the minimum value 0
denotes linear polarization and the maximum value 1 is
for circular polarization, and otherwise denotes ellipse
polarization. Using Eqs. (13) and (14) one can find that
the degree of ellipticity remains invariant on propagation
under certain conditions.
Figure 1 shows the normalized intensity distribution of

a tunable random electromagnetic beam at different
propagation distances in free space (i.e., ~C2

n ¼ 0). The
global parameters are set as: Ax ¼ Ay ¼ 1, jBxyj ¼ 0.0625,
φ ¼ π∕3, M ¼ N , λ ¼ 632.8 nm, σx ¼ σy ¼ 5 cm, δxyx ¼
δxyy ¼ 1.2 cm, ~C2

n ¼ 5 × 10−14 m−0.5, ξ ¼ 3.5. It is illus-
trated that the intensity distribution in the far field is
tunable in terms of elliptical, rectangular, star shape,
and cross shape by modulating the orderM and the initial
coherence width, though the source beam profiles are all
the same Gaussian distribution. The reason is that the
beam distribution is closely determined by the coherence
structure of the source beam. Since the coherence struc-
tures of common light sources usually satisfy Shell-model
(Gaussian functions) distributions, various non-Gaussian
shaped beams generated by these sources evolve into
Gaussian distributions in the far field. Based on this prin-
ciple, it is reasonable and possible for us to produce a
variety of specially designed beams by modulating the ini-
tial coherence structure function. In general, the coherence
structure can be synthesized either with the help of the
liquid crystal spatial light modulator (SLM) or by a
method reported recently[16].

For a comparison with Figs. 1(c) and 1(d), Fig. 2 shows
the normalized intensity distribution of a tunable random
electromagnetic beam at different propagation distances
in turbulence with the same values of parameter corre-
sponding to Figs. 1(c) and 1(d). It is clearly seen in
Fig. 2 that the beam profile obviously blurs on propaga-
tion and a significant beam spreading appears. The

Fig. 1. Normalized intensity distribution of a tunable random
electromagnetic beam at different propagation distances in free
space with parameters set as: (a) and (c) δxxx ¼ δyyx ¼ 1 cm,
δxxy ¼ δyyy ¼ 0.3 cm, (b) and (d) δxxx ¼ δyyy ¼ 1 cm, δxxy ¼
δyyx ¼ 0.3 cm. (a) and (b) M ¼ 1; (c) and (d) M ¼ 15.

Fig. 2. Normalized intensity distribution of a tunable random
electromagnetic beam at different propagation distances in tur-
bulent atmosphere with M ¼ 15. (a) δxxx ¼ δyyx ¼ 1 cm, δxxy ¼
δyyy ¼ 0.3 cm, (b) δxxx ¼ δyyy ¼ 1 cm, δxxy ¼ δyyx ¼ 0.3 cm.
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physical explanation is that the fluctuations of the atmos-
pheric refractive index induced by the turbulence are sta-
tistically uniform, which lead to a reduction of the spatial
coherence in light beams. In general, a spatial broadening
of the beam spot is caused by the reduction of the spatial
coherence. Therefore, the beam spot gradually evolves
into a Gaussian shape due to the effects of turbulence.
Figures 3 and 4 show that the spectral DOP of a tunable

random electromagnetic beam in free space and the turbu-
lence with the same values of parameters in Fig. 2. It is
seen from Fig. 3 that the on-axis spectral DOP monoton-
ically increases to the same value for different values of the
source beam parameter after a sufficiently long propaga-
tion distance in free space. However, the spectral DOP
will return to the initial value in the source plane after
propagating a sufficient distance in turbulence. Our
further study shows that this trend is independent of
the turbulent statistics that are in agreement with the pre-
vious results[24]. In addition, there is an obvious broadening

of the effective transverse spectral DOP in turbulence
compared with that in free space. The physical interpre-
tation is similar to the beam spot in turbulence. Figure 4
implies that the profile of spectral DOP is closely deter-
mined by the initial beam parameters rather than the
turbulent parameters.

To learn more about the polarization properties, Fig. 5
plots the SOP at different propagation distances for differ-
ent correlation structures with the same values of param-
eters in Fig. 2. One finds from Figs. 5(a–1)–5(a–3) that the
SOP of a rectangular correlated electromagnetic beam
remains invariant during propagation. However, there is
a significant change in the SOP of a cross-correlated
electromagnetic beam. The reason is that the far field
spectral intensity components Wxx and Wyy are non-
uniformly affected by the asymmetric correlation function
of the source beam that leads to a significant modulation
on the SOP. Except for the diagonal, off-diagonal, and a
small area around the beam center that remains invariant,
the SOP in the rest of the beam quickly evolves into being
linearly polarized.

In conclusion, we investigate the statistical properties of
a tunable random electromagnetic beam on propagation
through a turbulent atmosphere, with the help of a tensor
method. By modulating the source coherence structure
and the order M , a variety of novel beam profiles such
as elliptical, rectangular, star shape, and cross shape
are derived in the far field. Since the correlation structure
of a random electromagnetic beam is reformed by turbu-
lence on propagation, the beam distribution gradually be-
comes uniform. It is interesting to see that the on-axis
DOP monotonically increases to the same value for differ-
ent ordersM after a sufficiently long propagation distance
in free space, while it returns to the initial value in turbu-
lence, which is independent of the turbulent statistics.
Furthermore, the SOP is greatly affected by the source
correlation function, and the change in the turbulent
statistics induces a relatively small effect, which may be
useful for polarization sensing.

Fig. 3. DOP of a tunable random electromagnetic beam in free
space and the turbulence.

Fig. 4. DOP of a tunable random electromagnetic beam in
turbulence at different propagation distances.

Fig. 5. SOP of a tunable random electromagnetic beam in
turbulence at different propagation distances for different corre-
lation structures.
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